skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Comita, Liza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Abstract Lianas are key components of tropical forests, particularly at sites with more severe dry seasons. In contrast, trees are more abundant and speciose in wetter areas. The seasonal growth advantage (SGA) hypothesis postulates that such contrasting distributions are produced by higher liana growth relative to trees during seasonal droughts. The SGA has been investigated for larger size classes (e.g., ≥5 cm diameter at 1.3 m, dbh), but rarely for seedlings. Using eight annual censuses of >12,000 seedlings of 483 tree and liana species conducted at eight 1‐ha plots spanning a strong rainfall gradient in central Panama, we evaluated whether liana seedlings had higher growth and/or survival rates than tree seedlings at sites with stronger droughts. We also tested whether an extreme El Niño drought during the study period had a more negative effect on tree compared to liana seedlings. The absolute density of liana seedlings was similar across the rainfall gradient, ranging from 0.32 individuals/m2(0.20–0.49, 95% credible interval [CI]) at the driest end of the gradient and 0.27 individuals/m2(0.13–0.51 95% CI) at the wettest end of the gradient. The relative density of liana seedlings compared to tree seedlings was higher at sites with stronger dry seasons (0.27, 0.21–0.33, 95% CI), compared to wetter sites (0.12, 0.04–0.20 95% CI), due to lower tree seedling densities at drier sites. However, liana seedlings did not grow or survive better than tree seedlings in drier sites compared to wetter sites. Tree seedlings were more negatively impacted in terms of mortality by the extreme El Niño drought than liana seedlings, with an increase in annual mortality rate of 0.013 (0.003–0.025 95% CI) compared to lianas of −0.009 (−0.028 to 0.008 95% CI), but not growth. Our results indicate that lianas do not have a SGA over trees at the seedling stage. Instead, higher survival of liana versus tree seedlings during severe droughts or differences in liana versus tree fecundity or germination across the rainfall gradient likely explain why liana seedlings have higher relative densities at drier sites. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Assessing within-species variation in response to drought is crucial for predicting species’ responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species’ responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited. 
    more » « less
  4. Abstract All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade‐offs constrain the range of viable life‐history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade‐offs as they have a high diversity of coexisting tree species whose life‐history strategies tend to align along two orthogonal axes of variation: a growth–survival trade‐off that separates species with fast growth from species with high survival and a stature–recruitment trade‐off that separates species that achieve large stature from species with high recruitment. As these trade‐offs have typically been explored for trees ≥1 cm dbh, it is unclear how species' growth and survival during earliest seedling stages are related to the trade‐offs for trees ≥1 cm dbh. Here, we used principal components and correlation analyses to (1) determine the main demographic trade‐offs among seed‐to‐seedling transition rates and growth and survival rates from the seedling to overstory size classes of 1188 tree species from large‐scale forest dynamics plots in Panama, Puerto Rico, Ecuador, Taiwan, and Malaysia and (2) quantify the predictive power of maximum dbh, wood density, seed mass, and specific leaf area for species' position along these demographic trade‐off gradients. In four out of five forests, the growth–survival trade‐off was the most important demographic trade‐off and encompassed growth and survival of both seedlings and trees ≥1 cm dbh. The second most important trade‐off separated species with relatively fast growth and high survival at the seedling stage from species with relatively fast growth and high survival ≥1 cm dbh. The relationship between seed‐to‐seedling transition rates and these two trade‐off aces differed between sites. All four traits were significant predictors for species' position along the two trade‐off gradients, albeit with varying importance. We concluded that, after accounting for the species' position along the growth–survival trade‐off, tree species tend to trade off growth and survival at the seedling with later life stages. This ontogenetic trade‐off offers a mechanistic explanation for the stature–recruitment trade‐off that constitutes an additional ontogenetic dimension of life‐history variation in species‐rich ecosystems. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50-ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-yr intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 x 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. 
    more » « less
  6. ABSTRACT Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local‐scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD‐related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local‐scale CDD and its causes, including species‐specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics. 
    more » « less
  7. Abstract Many studies identify fungal and oomycete phytopathogens as natural enemies capable of influencing plant species composition and promoting diversity in plant communities. However, little is known about how plant‐pathogen interactions vary along regional abiotic gradients or with tree species characteristics, which limits our understanding of the causes of variation in tree species richness.We surveyed 10,756 seedlings from 272 tree species for disease symptoms along a mean annual precipitation gradient in the tropical wet forests of Central Panama for 3 months in the early wet season (June–August) and 2 months in the following dry season (March–April). Over 99% of observed disease symptoms were caused by necrotrophic foliar pathogens, while less than 1% of symptoms were attributed to soilborne pathogens. Foliar disease incidence was inversely related to mean annual precipitation, a pattern which may be due to greater disease susceptibility among dry forest species.Foliar disease incidence increased with conspecific seedling density but did not respond to the proximity of conspecific adults. Although foliar disease incidence decreased as mean annual precipitation increased, the strength of conspecific density‐ or distance‐dependence was independent of the precipitation gradient.Seedlings of common tree species and species dispersed by non‐flying mammals had a higher risk of foliar pathogen incidence. Increased disease in common species may help reduce their dominance.Synthesis. The increases in foliar pathogen incidence with conspecific seedling density, species abundance, and dispersal mechanism indicate that foliar disease incidence is non‐random and may contribute to the regulation of tropical plant communities and species coexistence. Furthermore, the relationships between foliar disease incidence, dispersal mechanism and precipitation suggest plant‐pathogen interactions could shift as a response to climate change and disruption of the disperser community. 
    more » « less
  8. Abstract Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50 ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old‐growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5‐year intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1‐m2seedling plot in the center of every 5 × 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1‐m2seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here, we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1 M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially‐explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly‐available, long‐term data on the dynamics of trees and shrubs ≥1 cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. This data set can be freely used for non‐commercial purposes; we request that users of these data cite this data paper in all publications resulting from the use of this data set. 
    more » « less